Setting the Title for a Figure or Axes in Matplotlib

In Matplotlib, the title method can be used to set the title for a figure or axes in a plot. Titles help to provide context and information about the data being visualized in the plot. In this article, we will explore how to set titles for figures and axes in Matplotlib using various examples.

Setting Title for Figure

To set a title for a figure in Matplotlib, you can use the suptitle method. This method sets the title for the entire figure. Here is an example:

import matplotlib.pyplot as plt

fig = plt.figure()
fig.suptitle('Title for the Figure', fontsize=16, fontweight='bold')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

In this example, the suptitle method is used to set the title “Title for the Figure” for the figure. You can customize the font size and weight of the title as needed.

Setting Title for Axes

To set a title for the axes in a plot, you can use the set_title method. This method sets the title for the individual axes. Here is an example:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_title('Title for the Axes', fontsize=14, fontweight='bold')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

In this example, the set_title method is used to set the title “Title for the Axes” for the axes in the plot. You can also customize the font size and weight of the title.

Example 1: Setting Title for Figure

import matplotlib.pyplot as plt

fig = plt.figure()
fig.suptitle('How to Set Title for Figure in Matplotlib')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 2: Setting Title for Axes

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_title('How to Set Title for Axes in Matplotlib')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 3: Customizing Title Font Size and Weight

import matplotlib.pyplot as plt

fig = plt.figure()
fig.suptitle('Customized Title', fontsize=18, fontweight='bold')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 4: Setting Different Titles for Multiple Subplots

import matplotlib.pyplot as plt

fig, axs = plt.subplots(2, 2)
fig.suptitle('Titles for Multiple Subplots')

for i, ax in enumerate(axs.flat):
    ax.set_title(f'Subplot {i+1}')

plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 5: Using LaTeX in Title

import matplotlib.pyplot as plt

plt.title(r'$\frac{1}{2} \times \sqrt{x}$')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 6: Rotating the Title

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_title('Rotated Title', fontsize=12, rotation=45)
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 7: Setting Title Color

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_title('Colored Title', fontsize=14, color='blue')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 8: Setting Title Background Color

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_title('Title with Background Color', fontsize=14, backgroundcolor='lightgrey')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 9: Title with Custom Font Family

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_title('Title with Custom Font', fontsize=14, family='fantasy')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

Example 10: Title Alignment

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_title('Center Aligned Title', fontsize=14, loc='center')
plt.show()

Output:

Setting the Title for a Figure or Axes in Matplotlib

In this article, we have explored various ways to set titles for figures and axes in Matplotlib. Titles help to provide important information about the data being visualized in the plot and can be customized in terms of font size, weight, color, alignment, and more. Experiment with different options to create visually appealing and informative plots in Matplotlib.

Pin It